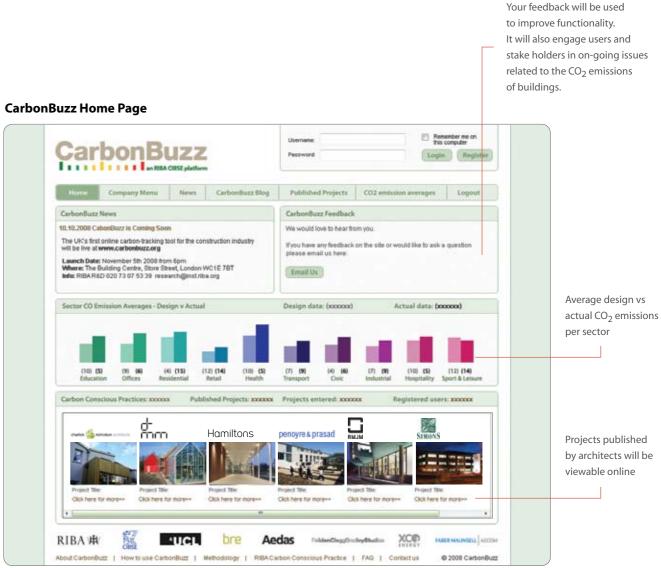

an RIBA CIBSE platform Buzz D

note from partners

CarbonBuzz emerged from a realisation that the construction industry suffers from a poor awareness of the link between CO₂ emissions and the energy use of buildings.

The project partners sought a means to support the industry in its drive to manage the energy use and CO₂ emissions from buildings and help architects and engineers to close the gap between designed energy use and actual energy use. This industry wide initiative is a significant collaboration between the Royal Institute of British Architects and the Chartered Institution of Building Services Engineers.

CarbonBuzz provides a platform to share and publish building energy use data, on an anonymous basis, in order to increase the evidence base for low energy design solutions. It is an ongoing research initiative, but is already in a position to become an important component of the building design process.



a work in progress

The Royal Institute of British Architects (RIBA) and the Chartered Institution of Building Services Engineers (CIBSE) invite you to join CarbonBuzz to manage the energy use and CO₂ emissions of your projects online. Practices choosing to publish data through this site will be able to gain 'carbon conscious' accreditation.

The CarbonBuzz platform provides an opportunity for practices to share project data and best practice with a view to informing low carbon design and influencing future policy and regulation. It presents a visual template for communicating energy use during design and post completion.

Anyone can use CarbonBuzz. Architects and engineers can use it to manage their project energy use and emissions from design through to completion and beyond. The front page of the site presents the user with up-to-date feedback on data gathered through CarbonBuzz. It highlights differences between design forecast and actual values for each sector.

using CarbonBuzz

Raising Awareness Online

Championed by Aedas Architects and using the CIBSE Energy Benchmarks with software from the BRE, CarbonBuzz provides a platform to benchmark and track project energy use from design to operation. It enables designers to compare forecast and actual energy use for their projects against the benchmarks and data for projects entered by participating practices anonymously.

The aim of the platform is to raise awareness of the measurement of CO₂ emissions from buildings and show the difference between forecast and real energy use. It is also hoped that it will help the industry address the sources of this discrepancy. It presents a template that encourages participating practices to share emissions and energy use data for all their buildings, both during design and once a building is occupied.

CarbonBuzz Database

CarbonBuzz is the first platform that compares designed energy use with actual energy use side by side. Project data entered by practices is sourced from existing M&E documentation, Part L reports and Post Occupancy Evaluations (POEs). Any data that could identify a project would remain private and cannot be attributed to individual projects or practices.

Overview of use and benefits of CarbonBuzz

Register

Register to manage and benchmark your projects' emissions. View sector-by-sector monitor View case studies published by fellow CarbonBuzz users.

\bigcirc
kWh

Project details

Add project details to establish benchmark category. Log key building features that affect the building's energy use.

Energy details

Enter design data from engineering forecasts and actual data from Post Occupancy Evaluation/energy bills.

Anonymous database

Compare performance against the database average and CIBSE's benchmarks and analyse differences. Compare your projects' actual CO₂ emissions with its design forecast.

CO ₂	

Published projects

Agree with clients to publish data through CarbonBuzz to gain **RIBA** Carbon Conscious Practice accreditation.

In this way, the site will build a contemporary and comprehensive database of forecast and actual building energy use for the UK. It will become an invaluable resource to participating practices allowing them to compare their projects against CIBSE benchmarks.

CarbonBuzz outcomes

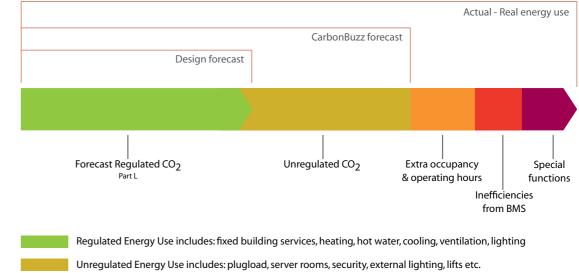
Anonymised and published data will inform future benchmarking, raise industry awareness and assist public research into current trends in building energy use.

design vs actual

Post-occupancy evaluation is an important method for designers and consultants to gain insight into the relationship between design and actual performance. The industry experience is that forecast design energy usage is usually less than the actual figure achieved.

CarbonBuzz will help designers to better understand this discrepancy and bridge it. Its use will focus their attention on the assessment of energy uses that are not reported as part of the Part L or EPC assessment such as appliance loads, occupancy level, operating hours and possible special uses. Energy use of lifts, display lighting, refrigeration and similar occupier defined activity are similarly omitted.from the

regulatory assessments. All of these will have a major impact on a buildings' actual energy use.


It also helps designers to align forecast and actual energy use data irrespective of whether the project has been assessed through the Part L, EPC or DEC systems allowing 'like for like' comparisons from design to completion.

CarbonBuzz will also help the construction industry deliver buildings that perform to design expectation by collecting data on how buildings perform in use. It will identify the causes of possible discrepancies between designed energy use and actual performance, and draw attention to the importance of submetering for easier building pathology.

Means readings for meter surrises 2045P11935					
Previous Reading	Recent Reading	Kilowatt bours used			
06128 25 Petr 07 we well you' meter	06420 12 Mar 07 we estimated year router reading at price-shange	222 over 13 days			
06420 12 Mar 07 se estimated your make reading at price change	07225 25 Apr 07 we salinated your menu reading at price change	805 over 45 days			
07225 25 Apr 07 we assimated your mean reading at price sharing	0.7845 5 Jun 07 we read your meter	620 over 41 days			

Actual data from bills etc.

Design forecast vs real energy use

Special functions include: trading floors, server rooms, cafeteria etc.

CarbonBuzz methodology

CarbonBuzz builds on established Display Energy Certification (DEC) methodology, which is based on the real energy use of buildings rather than a forecast asset rating (EPC). DECs are mandatory for many public buildings. Forward looking organisations are already considering the adoption of DECs on a voluntary basis.

CarbonBuzz is the first to apply the DEC methodology to both design and actual values. By inviting users to submit data for unregulated energy use, the platform allows for simple comparison of the design estimate and actual metered consumption within existing CIBSE benchmarks.

The platform is designed to enable participating practices to enter user inputs for electricity and fuel consumption in kWh/m²/yr and then converts them into a CO₂ emission profile.

The conversion is based on specific or default carbon emission factors. Renewable energy generation can also be input and is subtracted from consumption figures to quantify the project's overall emissions.

CarbonBuzz makes use of CIBSE TM46, which provides the backbone of DEC certification and contains energy consumption benchmarks for 29 different building use categories. The benchmarks are expressed in kWh/m²/yr and are converted into kgCO₂/m²/yr.

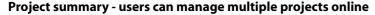
Each project report will display figures in kgCO₂/m²/yr. CIBSE benchmark, CarbonBuzz forecast, CarbonBuzz Actual, Project Forecast and Project Actual figures are all displayed in an easy to read format. This allows for comparison against average emissions for contemporary designed and built equivalents in addition to the notional emissions for the CIBSE benchmark.

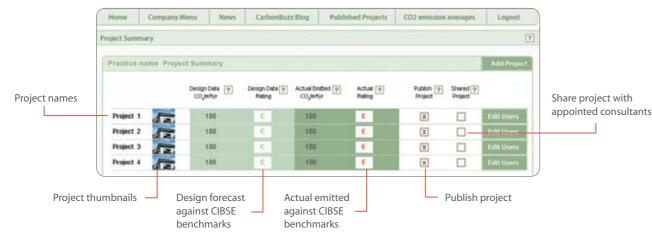
Dashboard showing CarbonBuzz design vs actual values against CIBSE benchmarks

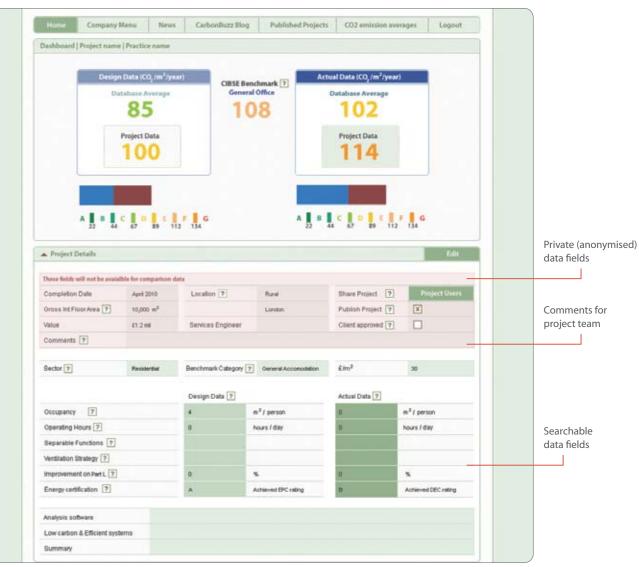
Data entry pages feature design vs actual energy values side by side

Electrical energy by end use

entering project data




project details

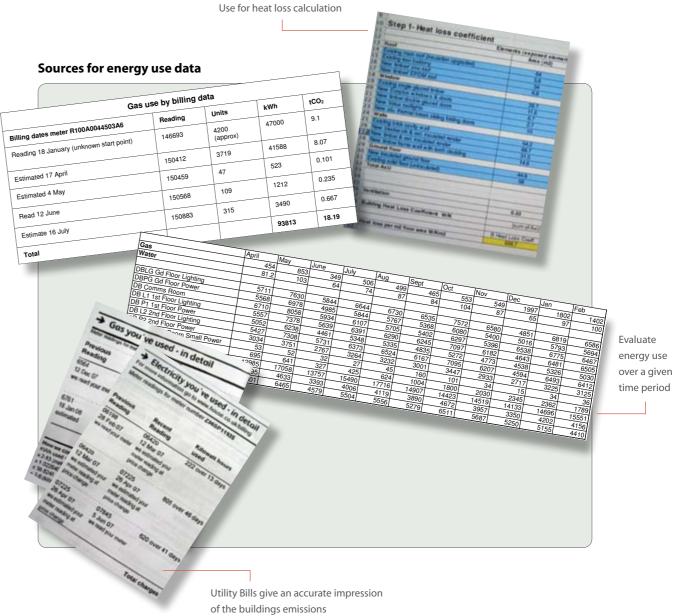

CarbonBuzz makes use of an interactive and user friendly template to help with the entry and management of carbon emission data for submitted projects.

Each participating practice is also provided with a secure login name and password. It is not possible to view other practices project data. Only the official auditors, appointed by CIBSE and RIBA, currently at University College London The Bartlett School of Graduate Studies are able to access all project data to ensure consistency and make any required corrections. Although CarbonBuzz values do not currently take location, occupancy, hours of operation or low carbon systems into account it is possible to enter this for each project. This data will be used to develop future search tools and enable research into a range of different questions.

When are low energy buildings beautiful? How much savings do low carbon technologies deliver for schools? How big a factor is occupancy? These and other questions can be answered through the analysis of 'identity free' project data.

Project details as viewed online

12 CarbonBuzz


sources of data

At the heart of CarbonBuzz is the ability to benchmark project emissions benchmarked during both design forecast and post occupancy.

Design forecast emissions are calculated during the design phases and can be updated throughout the project. The database currently holds only one set of data. These emissions are calculated through the use of thermal modeling techniques or steady state calculations by the M&E engineers. They are normally outlined in the M&E report from stage C onwards and as part of the Part L assessment. Case studies demonstrate the data source and entry.

Actual emissions are obtained through meter readings or utility bills after the building has been occupied for a period of time such that its use is considered stable. This would normally be at least one full year to enable an account to be made of the impact of variation in occupancy patterns and the change of the seasons. CarbonBuzz will provide a standard template for architects and engineers to discuss the energy use of their buildings and share design information online.

It is important to remember that CarbonBuzz is a voluntary benchmarking platform and not a certification process.

calculating emissions

CarbonBuzz uses the Part L emissions factors to convert energy use data to a carbon emissions profile for the project.

Each emission factor is defined according to the amount of carbon emitted, in kg, for each kWh of energy produced or consumed. The factors work as multipliers and permit an equivalent comparison of emissions from different types and sources of energy.

Different electricity grids will have different carbon factors associated with them. The

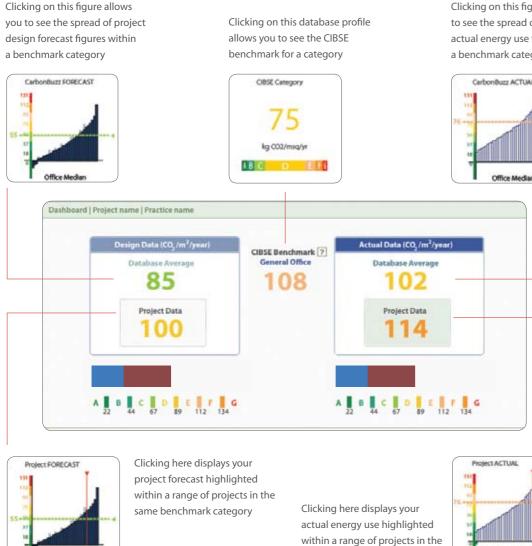
UK national electricity grid is currently rated at 0.55 kgCO₂/kWh as indicated in DEC methodology. Other local grids will have a different factor that can be input as required.

Fuel types will also vary in their emissions. Gas heating has an emission factor of 0.194 kgCO₂/kWh and Biomass heating a factor of 0.025 kgCO₂/kWh. Some fuel types have emission factors which are dependent on their source, such as biodiesel. These specific figures can also be input by the user as required.

Energy entry pages - Electrical energy

Fuel conversion factors in kgCO₂/kWh

National Grid Electricity	0.55	Biogas	0.025
Gas Heating	0.194	Coal	0.291
Biomass Heating	0.025	Anthracite	0.317
Natural Gas	0.194	Smokeless Fuel *	0.392
LPG	0.234	Dual Fuel Appliances **	0.187
Oil	0.265	Waste Heat ***	N/A


0.025	
).291	
).317	
).392	
).187	* Including Coke
.107	** Mineral and Wood
N/A	*** From industrial processes and power stations >10MWe, with

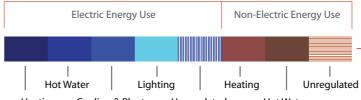
power efficiency > 35%

Enter unregulated energy figures to obtain a more accurate forecast against CIBSE benchmarks

emissions profile

same benchmark category

Clicking on this figure allows you to see the spread of project actual energy use figures within a benchmark category


Carbon&uzz ACTUAL Office Median

Office Median

By fuel

By end use

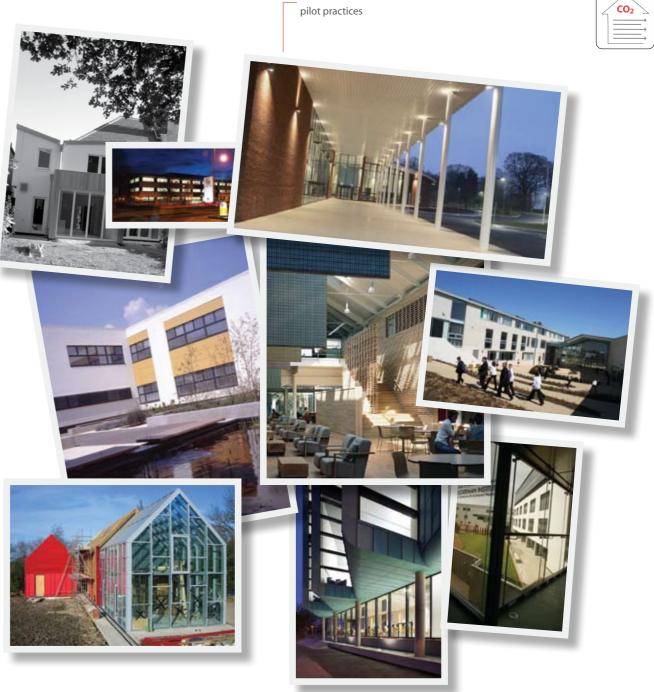
Space Heating Cooling & Plant Unregulated Hot Water

18 CarbonBuzz

Office Median

Bar chart shows the total energy use in a building, converted into CO₂ and split into electrical (blue) and non-electric (brown) segments. Renewable energy is also displayed as if provided by conventional fuels, but is deducted from the total figure by sliding the scale forward

Barchart allows the display of end uses, both in electric and non-electric energy use


publish projects to attain a RIBA **Carbon Conscious Accreditation**

Carbon Buzz operates using 'identity free' data but recognises the usefulness of even more tangible published data.

The initiative wishes to encourage participating practices to consider the value of publishing data on a 'full disclosure' basis. There is a severe lack of attributable and accessible building energy use data in the UK. This means that the industry is missing out on valuable knowledge and evidence about the effectiveness of design measures to reduce CO₂ emissions.

RIBA Carbon Conscious Accreditation

From 2010, participating RIBA Chartered Practices that elect to publish projects with both design and in-use data will be formally recognised by the Royal Institute of British Architects with 'RIBA Carbon Conscious Practice' accreditation.

Case studies from

Architectural Practice: **dRMM**

Project: The Sliding House Sector: Residential Completion Date: September 2008 Gross Internal Floor Area: 200m² Value: £500,000 Location: Rural, East of England

This is a ground breaking design in glass and steel with a moveable roof and geothermal heat pump and high levels of insulation. The design issues tackled a number of questions including;

Will the moveable roof give the best of all worlds - solar gain during daylight and insulation at night? How will the geothermal heat pump cope with wide variations in temperature between glass and timber sections? Is the airgap between house and roof sufficiently sealed to get value from the insulation in the roof? Results from full occupation will be forthcoming over the next 12 months, but CarbonBuzz has provided a helpful framework for evaluation.

Dashboard Project name	Practice name		
De	n Data ICO ₂ /m ² /ye stabase Average 35.5	General A	
	Project Data		
▲ Project Details	<mark>е р е</mark> 1 ² в 1	5 15t 987	
A Project Details			
These fields will not be avaia	and the second		
Completion Date	Sept 2008	Location 7	Ru
Oross Int Floor Area [?]	£500,000	Section allocate	Ea
Value Commenta ?	2300,000	Services Engineer	
Sector 👔	Residential	Benchmark Category [9 Ger
		Design Data ?	
Occupancy [7]		2	n2/1
Operating Hours ?		18	hours
Separable Functions 7			
Ventilation Strategy ?		Heating and natural ventilation	
Improvement on Part L ?		0	*
			Achiev
Energy certification			
Energy certification 😨	tems		

ion	53.3 Project Data 30.6	
al t of England	Share Project (?) Publish Project (?) Client approved (?)	Edit Project Users
		best .
ral Accommodation	£lm²	
ral Accommodation		
ntan	£/m ² Artual Data ? 2 18	m ² / person hours / day
ral Accommodation	Actual Data 💽	

Architectural Practice: Aedas

Project: Stockley Academy Sector: Education Completion Date: September 2006 Gross Internal Floor Area: 12,800m² Value: £21,474,836 Location: Urban, London

Stockley Academy had been occupied for two years in January 2008, at the time of the post occupancy evaluation. Energy bills for the year commencing December 2007 were used to calculate actual carbon emissions. These were higher than those forecast at the design stage, primarily due to a higher than predicted unregulated energy use. A large number of computers per classroom and issues with the building management systems were identified as the main causes.

Dashboard with completed project emissions results

Non-Electrical Energy Details

	COgFactor	Data	Actual Data		
Total Non-Electric Fuel		108	kWh/m ²	42.7	MMh/m ²
Naine Gae	0.194	108	KNNun ²	42.7	ki/shah ²
Non-Electric Fuel Generation 🕶		0	White ²	0	iWh/m ²

*7	Actual Data (CO ₂ /m ² /year) Database Average	
5	52.5	
	Project Data	
	56.2	

Architectural Practice: C+N

- AL

Project: House extension, Church Vale Sector: Residential Completion Date: November 2006 Gross Internal Floor Area: 199m² Value: £175,000 Location: Urban, London

This project involved a two storey side and rear extension to a 1930's semi-detached house in North London. The design aimed to upgrade the energy efficiency of the whole dwelling by specifying high levels of insulation throughout the new construction and specific measures including an external insulated render system, underfloor heating, a new boiler and heating system and energy-efficient airtight windows and doors.

Dashboard with completed project emissions results

Annual Energy Details as viewed online

stal Electricity 🔋							Edit Profil
		COgFactor	Design	Data	Actual C	lata	
Total Electricity			24	kWilheim ²	33	kimbum ²	
Gvid Electricity		0.55	24	al-tain ²	33	Mithin ²	
Zero Carbon On-sile Generation	•	0	0	WAte ²	0	100.6c2	
Botac PV			0	NVMum ²	0	WWW.	
TidalWlive			0	White ²	0	What?	
Wind			0	Wayin ²	0	kristum ²	
Other			0	stratules ²	0	Midduln ²	
otal Non-Electric 7							Edit Profile
		CO ₂ Factor	Design	Data	Actual D	ata	
Total Non-Electric Fuel			114	kWillvim ²	182	Withim ⁴	
Mains Gas		0.194	114	W/him ²	182	What 2	
Non-Electric Fuel Generation 🐨			0	avotum ²	0	internal.	

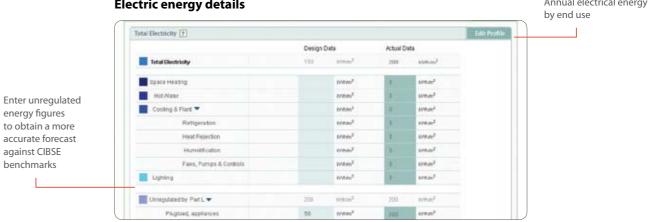
FeildenCleggBradleyStudios

case study 04

Architectural Practice: FCBStudios

Project: Heelis, The National Trust HQ Sector: Office Completion Date: June 2005 Gross Internal Floor Area: 7,100m² Value: **£14.5m** Location: Urban, Swindon

The new central office for the National Trust is a two storey building housing 470 staff in the centre of Swindon. A series of photovoltaic panels and 'snouts' in the open roof space provide for natural ventilation. Natural light penetrates through the double height spaces to the floorplate below. A post occupancy evaluation was carried out in 2006. It revealed that heating energy was considerable above the estimate due to unnecessary opening of the automatic windows. Energy use and CO₂ emissions have now been reduced dramatically.


Dashboard with completed project emissions results

Non-electrical energy details

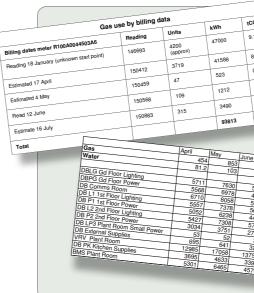
tal Non-Electric 7					
	COgFactor	Design (Data	Actual D	sta
otal Non-Electric Fuel		18.4	kWh/m ²	89.5	kWh/m ²
ains Gas	0.194	18.4	KNNuls ²	89.5	KMhim ²
Ion-Electric Fuel Generation 🔫		0	White?	0	iWhite ²

Electric energy details

Annual electrical energy

Architectural Practice: Simons Group

Project: Simons Group HQ Offices Sector: Office Completion Date: July 2006 Gross Internal Floor Area: 4586m² Value: £5m Location: Urban, East Midlands


Simons Group's HQ offices are designed to meet the landlord requirement for a low

energy commercial office space. The building has been refurbished from a two story 1970's office building on the edge of Lincoln. Reactive lighting controls and internal blinds, without task lighting, have been well received. The performance of the new wall and roof fabric is 25% better than existing Building Regulations requirements and gas heating requirements have proved very low.

Dashboard with completed project emissions results

Sources for project data

	1							
							、 、	
-								
O 2	-							
.1								
	-							
B.07								
	-							
0.101								
0.235	-							
0.201	_							
0.667								
+								
18.1	9							
9	July							
349	506	Aug	Sept	Oct				
64	74	499	465	553	Nov	Dec	1	
		87	84	104	549	1997	Jan 1005	Feb
5844 4985	6644	6730	0.7.7	104	87	65	1802 97	1402
5934	5844	5767	6535 5368	7572	6580		37	100
639	6107 6391	5705	5402	6080	5400	4851	6819	6586
461	5348	6290	6245	6297	5396	5016 6538	5793	5694
731	6373	5335	4835	7097 5272	6182	4643	6775	6467
767	3264	6524	6167	7095	4773	4538	6481	6505
32	27	3232	3001	3447	6207	4594	5326	5030
27	425	45	160	101	2933	2717	6493	6412
57	15490	624	1004	1800	34	15	3225	3125
27 57 93 79	4006	17716	14907	14423	2030	2345	34	36
79	5504	4119	3890	4672	14519	14133	2362	1789
		5556	5279	6511	3957	3350	14696	15551
				0011	5687	5250	4202	4156
							5155	4410

Architectural Practice: RMJM

case study 07

Architectural Practice: RMJM

Project: University of Sheffield Sector: Education Completion Date: April 2007 Gross Internal Floor Area: 8995m² Value: £21,474,836 Location: Urban, Yorkshire and Humberside The Information Commons building is situated in the heart of the University of Sheffield's urban campus and provides a 24/7 integrated learning environment for undergraduate and postgraduate students. Sustainability is a key issue for the project. The design team has adopted a number of strategies to ensure energy efficiency throughout, always bearing in mind the 24-hour nature of the facility. These include a highly insulated external envelope, the use of exposed thermal mass within the structure of the building and flexible zoned heating and cooling units, minimising glare and optimising use of daylight through the 'north light fins'.

Project: **ZICER** Sector: **Education** Completion Date: **March 2003** Gross Internal Floor Area: **2,860m²** Value: **£6,130,000** Location: **Rural, Yorkshire and Humberside**

Dashboard with completed project emissions results

Dashboard | Project name | Practice name Actual Data (CO, /m³/year) CIBSE Benchmark Database Average General Office Database Average 24.1 69.5 75.1 Project Data Project Data 182.3 104.3 C 0 0 D # 40 # 10 KH 1

Dashboard with completed project emissions results

32 CarbonBuzz

The Zuckerman Institute for Connective Environmental Research (ZICER) is part of the University of East Anglia's internationallyacclaimed School of Environmental Sciences. The state-of-the-art building houses a virtual reality and experimental laboratories, open plan office research space, exhibition and seminar space on the top floor which is clad with a photovoltaic (PV) cell array. The building is designed to surpass the many innovative low-energy buildings on campus with a target energy use not to exceed 100kW/m² per annum.

Hamiltons

Architectural Practice: Hamiltons

Project: Mid-Bedfordshire Local **Government Offices** Sector: Office Completion Date: May 2006 Gross Internal Floor Area: 6,000m² Value: £11,000,000 Location: Rural, South East

These new council offices are arranged around a double-height public space with meeting rooms providing a buffer between the public

space and the three fingers of office space. The design employs traditional materials used in a contemporary manner and relies on natural light and ventilation to create a friendly modern environment. The building has been occupied for a few years and is currently used more intensively than envisaged. The occupiers are currently actively working to reduce energy consumption and achieve levels closer to the design specification. They currently use a green electricity supplier.

Annual energy details from CarbonBuzz

penoyre & prasad

Architectural Practice: Penoyre & Prasad

Project: Ousdale School New Building Sector: Education Completion Date: April 2007 Gross Internal Floor Area: 8,342m² Value: £15,000,000 Location: Urban, East Midlands

Environmental sustainability is central to the design of this new teaching centre. The north south orientation of both parts of the building reduces heat gain from low angle sun, while high ceilings and windows ensure good spread of daylighting in classrooms. Insulation

levels higher than Building Regulations 2002 requirements ensure a minimal need for heating. Natural ventilation with airshafts in majority of teaching spaces combine with exposed thermal mass and night-time cooling. CO₂ sensors also link to BMS help ensure good air quality throughout the year. The achieved performance reflects the effectiveness of these measures.

The building was designed to pre-2002 legislation, therefore no forecast figures are available.

	Data (CO ₂ /m ³ /ye	CIBSE B	enchr
	24.5	5	School
. 9 8	2 9 9	6 3 1	
 Project Details 			_
These fields will not be avaia			F
Completion Date	Sept 2008	Location 7	
Owners but Finan turns [3]	200 m ²		
	200 m ²	Services Engineer	E
Value	200 m ² £500,000	Services Engineer	E
Oross Int Floor Area (?) Value Comments (?) Sector (?)		Services Engineer Benchmark Category	
Value Comments 7	£500,000		
Value Comments (?) Bector (?)	£500,000	Benchmark Calegory	
Value Comments 7 Bector 7	£500,000	Benchmark Category	P G
Value Comments (?) Bector (?) Occupancy (?)	£500,000	Benchmark Category Design Data 7	7 Ge m ² /
Value Comments ? Bector ? Occupancy ? Operating Hours ?	£500,000	Benchmark Category Design Data 7	7 Ge m ² /
Value Comments ? Bector ? Occupancy ? Operating Hours ? Separable Functions ?	£500,000	Benchmark Category Design Data ? 2 18 Heating and natural	7 Ge m ² /
Value Comments ? Sector ? Occupancy ? Operating Hours ? Separable Functions ? Wentilation Strategy ?	£500,000	Benchmark Category Design Data ? 2 18 Heating and natural ventilation	? Ge m²/ hour
Value Comments 7 Sector 7 Occupancy 7 Operating Hours 7 Separable Functions 7 Wentiation Strategy 7 Improvement on Part L 7	£500,000	Benchmark Category Design Data ? 2 18 Heating and natural ventilation	7 Gr =2/ hour %

CarbonBuzz

Annual energy details from CarbonBuzz

K[?]	al Data (CQ, m ² /yea Database Average 52.5 Project Data 43.6	
al t of England	Share Project (7)	
	Client approved 7	1000
ral Accommodation	£im² Actual Data [?]	
		m ² / person
ral Accommodation	Actual Data 7 2 18 Heating and natural	m ² / person hours / day
rias	Actual Data 👔 2 18	

Piloting Practices

dRMM Hamiltons BDP HOK Sheppard Robson Make Mott MacDonald Atelier Ten

Extended Pilot Practices / Organisations

Bioregional Buro Happold Broadway Malyan CarbonLite Programme Centre for Alternative Technology Charlick & Nicholson Architects Hilson Moran Hopkins Architects Ltd Max Fordham Oxford Brookes University Penoyre & Prasad LLP Ramboll Whitbybird RMJM Scott Brownrigg Simons Design

This publication has been sponsored by UrbanBuzz and Aedas Architects

CarbonBuzz Contributors

Aedas R&D Sustainability Group Judit Kimpian / Eleanor Davies

Building Research Establishment Ranjit Bassi / Soni Muthoni

Chartered Institution of Building Services Engineers Hywel Davies

Faber Maunsell Paul Woods

Feilden Clegg Bradley Studios Bill Gething

Royal Institute of British Architects Keith Snook / Anna Gagliano / Luis Belmonte

University College London, The Bartlett School of Graduate Studies Harry Bruhns / Dejan Mumovic / Tadj Oreszczyn

Usable Buildings Trust Bill Bordass

XCO₂ Energy Ricardo Moreira

Art work and text by Aedas R&D / Ocean / The Tin / XCO₂ Energy

Printed on Cyclus Print which is made up of 100% recycled post-consumer waste and has been awarded with the Nordic Swan eco label. The label represents a vision of a sustainable society. Cyclus is totally recyclable and biodegradeable.